APPLICATION ON b \hat{g} -CLOSEDSETS IN TOPOLOGICAL SPACES

¹K.Bala Deepa Arasi, ²A.Balavickhneswari, ³V.Maheswari

^{1,3}Assistant Professor of Mathematics, PG & Research Department of Mathematics, A.P.C.Mahalaxmi College For Women, Thoothukudi, TN, India. <u>baladeepa85@gmail.com</u>
²M.Phil Scholar, PG & Research Department of Mathematics,

A.P.C.Mahalaxmi College For Women, Thoothukudi, TN, India.

balavig1091996@gmail.com

Abstract:

In 1970, Levine defined generalized closed sets in Topological Spaces. In 2013, R.Subasree and M.Maria Singam introduced a new set namely $b\hat{g}$ -closed set which is defined as $bcl(A) \subseteq U$ whenever $A \subseteq U$ and U is \hat{g} -open in X. Later, they have established function such as $b\hat{g}$ -continous function that is the inverse image of every closed set is $b\hat{g}$ -closed in $.b\hat{g}$ -irrresolute function if the inverse image every $b\hat{g}$ -closed set is $b\hat{g}$ -closed; $b\hat{g}$ -open map means the image of every open set is $b\hat{g}$ -open and $b\hat{g}$ -closed map means the image of every closed set is $b\hat{g}$ -closed. In 1973, Das defined semi-interior point and semi-limit point of a subset. Further, the semi-derived set of a topological space was defined and studied by him. Following this concept, we define $b\hat{g}$ -limit point, $b\hat{g}$ -derived set, $b\hat{g}$ -border, $b\hat{g}$ -frontier and $b\hat{g}$ -exterior of a subset of topological spaces using the concept of $b\hat{g}$ -closed sets which is defined as and we studied some of its properties.

Keywords: $b\hat{g}$ -limit point, $b\hat{g}$ -derived set, $b\hat{g}$ -border, $b\hat{g}$ -frontier, $b\hat{g}$ -exterior, $b\hat{g}$ -closed set.

INTRODUCTION:

In 2013, R. Subasree and M. Maria Singam introduced[3] a new set namely $b\hat{g}$ closed set. In 1973, Das[2] defined semi-interior point and semi-limit point of a subset. Further, the semi-derived set of a topological space was defined and studied by him. Following this concept, we define $b\hat{g}$ -limit point, $b\hat{g}$ -derived set, $b\hat{g}$ -border, $b\hat{g}$ -frontier and $b\hat{g}$ -exterior of a subset of topological spaces using the concept of $b\hat{g}$ closed sets which is defined as and we studied some of its properties.

PRELIMINARIES:

Throughout this paper (X,τ) (or simply X) represents topological space on which no separation axioms are assumed unless otherwise mentioned . For a subset A of (X,τ) , Cl(A), Int(A), D(A), b(A) and Ext(A) denote the closure, interior, derived, border and exterior of A respectively. We are giving some basic definitions.

Definition 2.1: A subset A of a topological space (X,τ) is called

- 1) $b\hat{g}$ -closed set if bcl(A) \subseteq U whenever A \subseteq U and U is \hat{g} -open in X. The collection of all $b\hat{g}$ -closed sets in (X, τ) is denoted by $b\hat{g}$ -C (X, τ) .
- 2) $b\hat{g}$ -open set if $X \setminus A$ is $b\hat{g}$ -closed in A. The collection of all $b\hat{g}$ -open sets in (X, τ) is denoted by $b\hat{g}$ -O (X, τ) .

Definition 2.2: Let A be the subset of a space (X, τ) . Then

- 1) The *border of* A is defined as $b(A) = A \setminus Int(A)$.
- 2) The *frontier of A* is defined as Fr(A) = Cl(A)\Int (A).
- 3) The *exterior of* A is defined as $Ext(A) = Int(X \setminus A)$.

Theorem 2.3: [2]

- 1) Every closed set is $b\hat{g}$ -closed.
- 2) Every open set is $b\hat{g}$ -open.

3. PROPERTIES OF $b\hat{g}$ -INTERIOR AND $b\hat{g}$ -CLOSURE:

Definition 3.1: The $b\hat{g}$ -interior of A is defined as the union of all $b\hat{g}$ -open sets of X contained in A. It is denoted by $b\hat{g}$ Int(A).

Definition 3.2: A point $x \in X$ is called $b\hat{g}$ -*interior point* of A if A contains a $b\hat{g}$ -open sets containing x.

Definition 3.3: The $b\hat{g}$ -closure of A is defined as the intersection of all $b\hat{g}$ -closed sets of Xcontaining A.It is denoted by $b\hat{g}$ Cl(A).

Theorem 3.4: If A is a subset of X, then $b\hat{g}Int(A)$ is the set of all $b\hat{g}$ -interior points of A.

Proof: If $x \in b\hat{g}$ Int(A), then x belongs to some $b\hat{g}$ -open subset U of A. That is, x is a $b\hat{g}$ -interior point of A.

Remark 3.5: If A is any subset of X, $b\hat{g}$ Int(A) is $b\hat{g}$ -open. In fact $b\hat{g}$ Int(A) is the largest $b\hat{g}$ -open set contained in A.

Remark 3.6: A subset A of X is b \hat{g} - open \Leftrightarrow b \hat{g} Int(A)=(A).

Result 3.7: For the subset A of a topological space (X, τ) , $Int(A) \subseteq b\hat{g}$ Int(A).

Proof: Since Int(A) is the union of open sets and theorem 2.3(2), Int(A) is $b\hat{g}$ -open. It is clear from the definition 3.1 that Int(A) $\subseteq b\hat{g}$ Int(A).

Theorem 3.8: Let A and B be the subsets of a topological space (X, τ) , then the following result holds:

- 1) $b\hat{g}$ Int(\emptyset)= \emptyset ;
- 2) $b\hat{g}$ Int(X)=X;
- 3) $b\hat{g}$ Int(A) \subseteq A;
- 4) $A \subseteq B \Longrightarrow b\hat{g} Int(A) \subseteq b\hat{g} Int(B);$
- 5) $b\hat{g}Int(A \cup B) \supseteq b\hat{g}Int(A) \cup b\hat{g}Int(B);$
- 6) $b\hat{g}Int(A \cap B) \subseteq b\hat{g}Int(A) \cap b\hat{g}Int(B);$
- 7) $b\hat{g}$ Int(Int(A)) = Int(A);
- 8) $Int(b\hat{g} Int(A)) \subseteq Int(A);$
- 9) $b\hat{g}$ Int $(b\hat{g}$ Int $(A)) = b\hat{g}$ Int(A)

Proof: (1), (2) and (3) follows from definition 3.1.

(4) From definition 3.1 we have, $b \hat{g}$ Int(A) \subseteq A. Since A \subseteq B, $b \hat{g}$ Int(A) \subseteq B. But $b \hat{g}$ Int(B) \subseteq B. By remark 3.5 $b \hat{g}$ Int(A) $\subseteq b \hat{g}$ Int(B). (5) Since $A \subseteq A \cup B; B \subseteq A \cup B$ and by (4) we have, $b\hat{g}$ Int(A) $\subseteq b\hat{g}$ Int(A $\cup B$) and $b\hat{g}$ Int(B) $\subseteq b\hat{g}$ Int(A $\cup B$). Therefore $b\hat{g}$ Int(A) $\cup b\hat{g}$ Int(B) $\subseteq b\hat{g}$ Int(A $\cup B$).

(6) Since $A \cap B \subseteq A$; $A \cap B \subseteq B$ and by (4) we have, $b\hat{g}$ Int $(A \cap B) \subseteq b\hat{g}$ Int(A) and $b\hat{g}$ Int $(A \cap B) \subseteq b\hat{g}$ Int(B). Therefore $b\hat{g}$ Int $(A \cap B) \subseteq b\hat{g}$ Int $(A) \cap b\hat{g}$ Int(B).

(7) Since Int(A) is an open set and by theorem 2.3 (2), Int(A) is $b\hat{g}$ -open. By remark 3.6, $b\hat{g}$ Int(Int(A)) = Int (A).

(8) From definition 3.1 we have, b \hat{g} Int(A) \subseteq A. Clearly, it follows that Int(b \hat{g} Int(A)) \subseteq Int(A);

(9) Follows from remark 3.6 and 3.5.

Remark 3.9: If A is any subset of X, $b\hat{g}Cl(A)$ is closed. In fact $b\hat{g}Cl(A)$ is smallest $b\hat{g}$ -closed set containing A.

Remark 3.10: A subset A of X is $b\hat{g}$ -closed \Leftrightarrow $b\hat{g}$ Cl(A) = A.

Theorem 3.11: Let A and B be the subsets of a topological space (X, τ) , then the following result holds:

- 1) $b\hat{g} Cl(\emptyset) = \emptyset;$
- 2) $b\hat{g} Cl(X) = X;$
- 3) $A \subseteq b\hat{g} Cl(A);$
- 4) $A \subseteq B \ b\hat{g} \ Cl(A) \subseteq b\hat{g} \ Cl(B);$
- 5) $b\hat{g} Cl(b\hat{g} Cl(A)) = b\hat{g} Cl(A);$
- 6) $b\hat{g}Cl(A\cup B) \supseteq b\hat{g}Cl(A) \cup b\hat{g}Cl(B);$
- 7) $b\hat{g}Cl(A \cap B) \subseteq b\hat{g}Cl(A) \cap b\hat{g}Cl(B);$
- 8) $b\hat{g} Cl(Cl(A)) = Cl(A);$
- 9) $Cl(b\hat{g} Cl(A)) = Cl(A);$

Proof: (1), (2) and (3) follows from definition:3.3.

(4) From definition 3.3 we have, $A \subseteq b\hat{g} \operatorname{Cl}(A)$.Since $A \subseteq B$, $b\hat{g} \operatorname{Cl}(A) \subseteq B$. Therefore, $b\hat{g} \operatorname{Cl}(A) \subseteq b\hat{g} \operatorname{Cl}(B)$.

(5) Follows from remark 3.9 and 3.10.

(6) Since $A \subseteq A \cup B$; $B \subseteq A \cup B$ and by (4) we have, $b\hat{g} Cl(A) \subseteq b\hat{g} Cl(A \cup B)$ and $b\hat{g} Cl(B) \subseteq b\hat{g} Cl(A \cup B)$. Therefore, $b\hat{g} Cl(A) \cup b\hat{g} Cl(B) \subseteq b\hat{g} Cl(A \cup B)$.

(7) Since $A \cap B \subseteq A$; $A \cap B \subseteq B$ and by (4) we have, $b\hat{g}Cl(A \cap B) \subseteq b\hat{g}Cl(A)$ and $b\hat{g}Cl(A \cap B) \subseteq b\hat{g}Cl(B)$. Therefore, $b\hat{g}Cl(A \cap B) b\hat{g}Cl(A) \cap b\hat{g}Cl(B)$.

(8) Since Cl(A) is a closed set and by theorem 2.3 (1), Cl(A) is $b\hat{g}$ -closed. Therefore by remark 3.10, $b\hat{g}$ Cl(Cl(A)) = Cl(A).

(9) Follows from remark 3.9 and 3.10.

4. APPLICATION OF $b\hat{g}$ -OPEN SETS

Definition 4.1: Let A be a subset of a topological space X. A point $x \in X$ is said be \hat{g} -limit point of A if for every \hat{g} -open set U containing, $U \cap (A \setminus \{x\}) \neq \emptyset$. The set of all \hat{g} -limit points of A is called an \hat{g} -derived set of A and is denoted by $\hat{b}\hat{g}$ (A).

Example 4.2: Let $X = \{a,b,c\}$ with property $\tau = \{X, \emptyset, \{a\}, \{a,b\}\}$ and b \hat{g} O(X) = $\{X, \emptyset, \{a\}, \{b\}, \{a,c\}, \{a,b\}\}$. If A= $\{b\}$, then b \hat{g} D(A) = $\{b\}$.

Result 4.3: Let A be a subset of a topological space X. Then,

- 1) $b\hat{g} Cl(X \setminus A) = X \setminus b\hat{g} Int(A)$
- 2) $b\hat{g}$ Int $(X \setminus A) = X \setminus b\hat{g}$ Cl(A)

Proof:

1) Let $x \in X \setminus b \hat{g}$ Int(A). Then, $x \notin b \hat{g}$ Int(A). This implies that x does not belong to any $b\hat{g}$ -open subset of A. Let F be a $b\hat{g}$ -closed set containing $X \setminus A$. Then $X \setminus F$ is $b\hat{g}$ open set contained in A. Therefore, $x \notin X \setminus F$ and so $x \in F$. Hence, $x \in b\hat{g}Cl(X \setminus A)$. This implies $X \setminus b\hat{g}$ Int(A) $\subseteq b\hat{g}Cl(X \setminus A)$. On the other hand, let $x \in b\hat{g} Cl(X \setminus A)$. Then x belongs to every $b\hat{g}$ closed set containing $X \setminus A$. Hence, x does not belongs to any $b\hat{g}$ -open subset of A. That is $x \notin b \hat{g}$ Int(A). This implies $x \in X \setminus b \hat{g}$ Int(A). Therefore, $b\hat{g} Cl(X \setminus A) \subseteq X \setminus b\hat{g}$ Int(A). Thus, $b\hat{g} Cl(X \setminus A) = X \setminus b\hat{g}$ Int(A).

2) can be proved by replacing A by X \A in1) and using set theoretic properties.

Theorem 4.4: For subsets A,B of a space X,the following statement holds:

- 1) $D(A) \subseteq b \hat{g} D(A)$, where D(A) is the derived set of A;
- 2) $b\hat{g} D(\emptyset) = \emptyset;$
- 3) If $A \subseteq B$, then $b\hat{g} D(A) \subseteq b\hat{g} D(B)$;
- 4) $b\hat{g} D(A \cup B) \supseteq b\hat{g} D(A) \cup b\hat{g} D(B);$
- 5) $b\hat{g} D(A \cap B) \subseteq b\hat{g} D(A) \cap b\hat{g} D(B);$
- 6) $b\hat{g} D(A) \subseteq b\hat{g} D(A \setminus \{x\})$

Proof: 1) Let $x \in D(A)$. By the definition of D(A), there exist an open set U containing *x* such

that $U \cap (A \setminus \{x\}) \neq \emptyset$. By theorem 2.3 (2), U is an $b\hat{g}$ -open set containing x such that $U \cap (A \setminus \{x\}) \neq \emptyset$. Therefore, $x \in b\hat{g}(A)$. Hence, $D(A) \subseteq b\hat{g}(A)$.

- 2) For all bĝ-open set U and for all x ∈ X,U ∩ (Ø \ {x}) = Ø. Hence, bĝ D(Ø) = Ø.
- 3) Let x ∈bĝD(A). Then for each bĝ-open set U containing x, U ∩ (A \ {x}) ≠
 Ø. Since A⊆ B, U ∩ (B \ {x})≠Ø. This implies that x ∈ bĝ(B). Hence bĝD(A) ⊆
 bĝD(B).
- 4) Let $x \in b\hat{g} D(A) \cup b\hat{g} D(B)$. Then $x \in b\hat{g} D(A)$ or $x \in b\hat{g} D(B)$. If $x \in b\hat{g} D(A)$, then for each $b\hat{g}$ -open set U containing x, $U \cap (A \setminus \{x\}) \neq \emptyset$. Since $A \subseteq A \cup B$, $U \cap (A \cup B \setminus \{x\}) \neq \emptyset$. This implies that $x \in b\hat{g} D(A \cup B)$. Hence $b\hat{g} D(A) \subseteq b\hat{g} D(A \cup B)$. B). $\rightarrow (1)$
 - Otherwise, if $x \in b \hat{g} D(B)$, then for each $b\hat{g}$ -open set U containing $x, U \cap$ $(B \setminus \{x\}) \neq \emptyset$. Since $B \subseteq A \cup B$, $U \cap$ $(A \cup B \setminus \{x\}) \neq \emptyset$. This implies that $x \in b \hat{g} D(A \cup B)$. Hence, $b \hat{g} D(B) \subseteq b \hat{g}$ $D(A \cup B) \rightarrow (2)$

From (1) and (2), $b\hat{g} D(A) \cup b\hat{g} D(B) \subseteq b\hat{g} D(A \cup B)$.

- 5) Let x ∈bĝ D(A∩ B). Then for each bĝ-open set U containing x, U∩ (A∩ B \ {x}) ≠ Ø. Since A∩ B ⊆ A, U∩ (A \ {x})≠ Ø. This implies that x ∈bĝ D(A). Also, since A∩ B⊆ B,U∩ (B \ {x}) ≠ Ø. This implies that x ∈ bĝD(B). Therefore, x ∈bĝ D(A)∩ bĝ D(B). Thus bĝ D(A∩ B) ⊆ bĝ D(A)∩ bĝ D(B).
- 6) Let x ∈bĝD(A).Then for each bĝ-open set U containing x, U ∩ (A \ {x}) ≠
 Ø. This implies that U ∩ ((A \ {x}) \ {x})≠ Ø. This implies that x ∈ bĝD(A \ {x}). Hence, bĝD(A) ⊆ bĝD(A \ {x}).

Definition 4.5: If A is subset of X, then the $b\hat{g}$ -border of A is defined by $b\hat{g}$ b(A) =A $b\hat{g}$ Int(A).

Theorem 4.6: For a subset A of a space X, the following statement holds:

- 1) $b\hat{g} b(\emptyset) = \emptyset;$
- 2) $b\hat{g} b(X) = X;$

3) $b\hat{g} b(A) \subseteq (A);$

- 4) $b\hat{g} \ b(A) \subseteq b(A)$; where b(A) denotes the border of A;
- 5) $b\hat{g} \operatorname{Int}(A) \cup b\hat{g} b(A) = A$;
- 6) $b\hat{g}$ Int(A) $\cap b\hat{g}$ $b(A) = \emptyset;$
- 7) $b\hat{g} b(b\hat{g} Int(A)) = \emptyset;$
- 8) $b\hat{g} Int(b\hat{g} b(A)) = \emptyset$;
- 9) $b\hat{g} b(b\hat{g} b(A)) = b\hat{g} b(A)$.

Proof: 1),2) and 3) follows from definition 4.5.

- 4) Let $x \in b\hat{g}$ b(A).Then by definition 4.5, $x \in A \setminus b\hat{g}$ Int(A). This implies that $x \in$ A and $x \notin b\hat{g}$ Int(A). By result 3.7, $x \in A$ and $x \notin$ Int(A).This implies that $x \in$ $A \setminus Int(A)$. This implies that $x \in b(A)$. Hence, $b\hat{g}$ b(A) \subseteq (A).
- 5) and 6) follows from definition 4.5

7) $b\hat{g} b(b\hat{g} \operatorname{Int}(A)) = b\hat{g} \operatorname{Int}(A) \setminus b\hat{g} \operatorname{Int}(b\hat{g} \operatorname{Int}(A)) = b\hat{g} \operatorname{Int}(A) \setminus b\hat{g} \operatorname{Int}(A)$ (by theorem 3.8(9)) which is \emptyset . Hence, $b\hat{g}b(b\hat{g} \operatorname{Int}(A)) = .\emptyset$.

8) Let $x \in b\hat{g}$ Int $(b\hat{g} \ b(A))$. By theorem 3.8 (3), $x \in b\hat{g} \ b(A)$. On the other hand, since $b\hat{g}$ $b(A) \subseteq A$, $x \in b\hat{g}$ Int(A). Therefore, $x \in b\hat{g}$ $b(A) \cap b\hat{g}$ Int(A) which is a contradiction to (6). Hence, $b\hat{g}$ Int $(b\hat{g} \ b(A)) = \emptyset$.

9) $b\hat{g} b(b\hat{g} b(A)) = b\hat{g} b(A) \setminus b\hat{g} Int(b\hat{g} b(A))$ = $b\hat{g} b(A) \setminus \emptyset = b\hat{g} b(A)$ (from(8)). Hence, $b\hat{g}$ ($b\hat{g} b(A)$) = $b\hat{g} b(A)$.

Definition 4.7: If A is a subset of X, then the $b\hat{g}$ -*frontier* of A is defined by $b\hat{g}$ Fr(A) = $b\hat{g}$ Cl(A) $b\hat{g}$ Int(A).

Theorem 4.8: Let A be a subset of a space X. Then the following statement holds:

- 1) $b\hat{g} Fr(\phi) = \phi;$
- 2) $b\hat{g} Fr(X) = \emptyset$;
- 3) $b\hat{g} Fr(A) \subseteq b\hat{g} Cl(A);$
- 4) $b\hat{g} \operatorname{Fr}Cl(A) = b\hat{g} \operatorname{Int}(A) \cup b\hat{g} \operatorname{Fr}(A);$
- 5) $b\hat{g}$ Int(A) $\cap b\hat{g}$ Fr(A) = \emptyset ;
- 6) $b\hat{g} b(A) \subseteq b\hat{g} Fr(A);$
- 7) $b\hat{g} Fr(b\hat{g} Int(A)) \subseteq b\hat{g} Fr(A);$
- 8) $b\hat{g} Cl(b\hat{g} Fr(A)) \subseteq b\hat{g} Cl(A);$
- 9) $b\hat{g}$ Int(A) $\subseteq b\hat{g}$ Cl(A)
- 10) $b\hat{g}$ Int $(b\hat{g} Fr(A)) \subseteq b\hat{g} Cl(A);$
- $11)X = b\hat{g} Int(A) \cup b\hat{g} Int(X \setminus A) \cup b\hat{g}$ Fr(A);
- 12) $b\hat{g}Fr(A) = b\hat{g} Cl(A) \cap b\hat{g} Cl(X \setminus A);$
- 13) $b\hat{g} Fr(A) = b\hat{g} Fr(X \setminus A)$.

Proof: (1),(2),(3) and (4) follows from definition:4.7.

www.jetir.org (ISSN-2349-5162)

- 5) $b\hat{g} \operatorname{Int}(A) \cap b\hat{g} \operatorname{Fr}(A) = b\hat{g} \operatorname{Int}(A) \cap (b\hat{g} \operatorname{Cl}(A) \setminus b\hat{g} \operatorname{Int}(A) \subseteq A \cap (b\hat{g} \operatorname{Cl}(A) \setminus A)$ (by theorem 3.8(3)). $b\hat{g} \operatorname{Int} (A) \cap b\hat{g}$ $\operatorname{Fr}(A) \subseteq b\hat{g} \operatorname{Cl}(A) \cap (b\hat{g} \operatorname{Cl}(A) \setminus b\hat{g} \operatorname{Cl}(A))$ (by theorem 3.11(3)). $b\hat{g} \operatorname{Int} (A) \cap b\hat{g} \operatorname{Fr}$ (A) = $b\hat{g} \operatorname{Cl}(A) \cap \emptyset = \emptyset$. Hence, $b\hat{g} \operatorname{Int}(A) \cap b\hat{g} \operatorname{Fr}(A) = \emptyset$.
- 6) Let $x \in b\hat{g}b(A)$. Then $x \in A \setminus b\hat{g}$ Int(A). By theorem 3.11 (3), $x \in b\hat{g}Cl(A) \setminus b\hat{g}$ Int(A) = $b\hat{g}$ Fr(A). Hence, $b\hat{g}b(A) \subseteq b\hat{g}$ Fr(A).
- 7) $b\hat{g} \operatorname{Fr}(b\hat{g} \operatorname{Int}(A)) = b\hat{g} \operatorname{Cl}(b\hat{g} \operatorname{Int}(A)) \setminus b\hat{g}$ $\operatorname{Int}(b\hat{g} \operatorname{Int}(A)) \subseteq b\hat{g} \operatorname{Cl}(A) \ b\hat{g} \operatorname{Int}(A) \ (by$ theorem 3.8(3),(9)) which is $b\hat{g} \operatorname{Fr}(A)$. Hence, $b\hat{g} \ (b\hat{g} \operatorname{Int}(A)) \subseteq b\hat{g} \operatorname{Fr}(A)$.
- 8) From(3) we have, $b\hat{g} \operatorname{Cl}(b\hat{g}\operatorname{Fr}(A)) \subseteq b\hat{g}$ $\operatorname{Cl}(b\hat{g} \operatorname{Cl}(A)) = b\hat{g} \operatorname{Cl}(A)$ (by theorem 3.11 (5)). Hence, $b\hat{g} (b\hat{g} \operatorname{Fr}(A)) \subseteq b\hat{g}$ $\operatorname{Cl}(A)$.
- 9) follows from (4).
- 10) From (9), $b\hat{g} \operatorname{Int}(b\hat{g} \operatorname{Fr}(A)) \subseteq b\hat{g} \operatorname{Cl}(b\hat{g} \operatorname{Fr}(A)) \subseteq b\hat{g} \operatorname{Cl}(A)$ (from (8)). Hence, $b\hat{g}$ Int $(b\hat{g} \operatorname{Fr}(A)) \subseteq b\hat{g} \operatorname{Cl}(A)$.
- 11) $b\hat{g}$ Int(A) $\cup b\hat{g}$ Int(X \A) $\cup b\hat{g}$ Fr(A) = $b\hat{g}$ Cl(A) $\cup b\hat{g}$ Int(X \ A) (from (4)) = $b\hat{g}$ Cl(A) $\cup \{X \setminus b\hat{g}$ Cl(A)\} (by result 4.3(2)) which is X. Hence, X = $b\hat{g}$ Int(A) $\cup b\hat{g}$ Int(X \ A) $\cup b\hat{g}$ Fr(A).
- 12) $b\hat{g}$ Cl(A) \cap $b\hat{g}$ Cl(X \ A) = $b\hat{g}$ Cl(A) \cap (X \ $b\hat{g}$ Int (A)) (by result 4.3 (1)) = $b\hat{g}$ Cl(A) \ $b\hat{g}$ Int(A) (from (9)) = $b\hat{g}$ Fr(A).
- 13) b \hat{g} Fr($X \setminus A$) = b \hat{g} Cl($X \setminus A$) \ b \hat{g} Int($X \setminus A$) (by result 4.3). b \hat{g} Fr($X \setminus A$) = (b \hat{g} Cl(A) \ b \hat{g} Int (A) = b \hat{g} Fr(A).

Definition 4.9: If A be a subset of a space X. Then the $b\hat{g}$ -*Exterior of A* is defined by $b\hat{g}$ $Ext(A) = b\hat{g}$ Int(X \A).

Theorem 4.10: Let A be a subset of a space X. Then the following statement holds:

- 1) $b\hat{g} Ext(\emptyset) = X;$
- 2) $b\hat{g} Ext(X) = \emptyset$;
- 3) $Ext(A) \subseteq b\hat{g} Ext(A);$
- 4) $b\hat{g} Ext(A) = X \setminus b\hat{g} Cl(A)$;
- 5) A is closed iff $b\hat{g} Ext(A) = X \setminus A$;
- 6) If $A \subseteq B$, then $b\hat{g} Ext(A) \supseteq b\hat{g} Ext(B)$;

- 7) $b\hat{g} Ext (A \cup B) \subseteq b\hat{g} Ext(A) \cap b\hat{g} Ext(B);$ 8) $b\hat{g} Ext (A \cap B) \supseteq b\hat{g} Ext (A) \cup b\hat{g} Ext (B)$
- 9) $b\hat{g} Ext(A)$ is $b\hat{g}$ -open;
- $(A) = \frac{1}{2} \int \frac{\partial y}{\partial x} E_{XI}(A) = \frac{1}{2} \int \frac{\partial y}{\partial x} E_{XI}(A)$
- 10) $b\hat{g} Ext(X \setminus b\hat{g} Ext(A)) = b\hat{g} Ext(A);$ 11) $b\hat{g} Ext(b\hat{g} Ext(A)) = b\hat{g} Int(b\hat{g} Cl(A));$
- 11) $b\hat{g} Ext(b\hat{g} Ext(A)) = b\hat{g} Int(b\hat{g} Ct(A))$ 12) $b\hat{g} Int(A) \subseteq b\hat{g} Ext(b\hat{g} Ext(A));$
- 12) $bg Im(A) \subseteq bg Ext(bg Ext(A)),$ 13) $X = b\hat{g}Int(A) \cup b\hat{g}Ext(A) \cup b\hat{g} Fr(A).$

Proof :

- 1) $b\hat{g}Ext(\emptyset) = b\hat{g} Int(X \setminus A) = b\hat{g} Int(X) = X(by theorem 3.8 (2)).$
- 2) $b\hat{g} \operatorname{Ext}(X) = b\hat{g} \operatorname{Int}(X \setminus X) = b\hat{g} \operatorname{Int}(\emptyset)$ = \emptyset (by theorem 3.8(1))
- 3) Let $x \in Ext(A)$. Then by definition 2.2 (3), $x \in Int(X \setminus A)$. By theorem 3.7, $x \in b\hat{g} Int(\setminus A) = b\hat{g} Ext(A)$. Hence, $Ext(A) \subseteq b\hat{g} Ext(A)$.
- 4) Let $x \in b\hat{g} Ext(A) \Leftrightarrow x \in b\hat{g} Int(X \setminus A)$ $\Leftrightarrow x \in X \setminus b\hat{g} Cl(A)$ (by result4.3 (2)). Hence, $b\hat{g} Ext(A) = X \setminus b\hat{g} Cl(A)$.
- 5) Let A be bĝ-closed. Then X \A is bĝ-open. By remark 3.6, bĝ Int(X \ A) = X \ A. This implies that bĝ Ext(A) = X \ A. Conversely, let bĝ Ext(A) = X \ A. Then bĝ Int(X \ A) = X \ A. Again by remark 3.6, X \ A is bĝ-open. Hence, A is bĝ-closed.
- 6) $b\hat{g} \operatorname{Ext}(A) = b\hat{g} \operatorname{Int}(X \setminus A) = X \setminus b\hat{g} \operatorname{Cl}(A)$ (by result 4.3). $X \setminus b\hat{g} \operatorname{Cl}(B)$ (since $A \subseteq B$ and by theorem 3.11(4)). $b\hat{g} \operatorname{Int}(X \setminus B) =$ $b\hat{g} \operatorname{Ext}(B)$ (by definition 4.9). Hence, $b\hat{g}$ $\operatorname{Ext}(A) \supseteq b\hat{g} \operatorname{Ext}(B)$.
- 7) Since $A \subseteq A \cup B$ and by (6), $b \hat{g} Ext(A \cup B) \subseteq b\hat{g}$ (A). Similarly since $B \subseteq A \cup B$ and by (6), $b\hat{g} Ext(A \cup B) \subseteq b\hat{g}(B)$. Hence, $b \hat{g} Ext(A \cup B) \subseteq b \hat{g} Ext(A) \cap b\hat{g}Ext(B)$.
- 8) Since $A \cap B \subseteq A$ and by (6), $b \hat{g}$ $E x t(A) \subseteq b \hat{g} (A \cap B)$. Similarly since $A \cap B \subseteq B$ and by (6), $b \hat{g}$ $E x t(B) \subseteq b \hat{g} (A \cap B)$. Hence, $b \hat{g}$ $Ext(A) \cup b \hat{g} Ext(B) \subseteq b \hat{g} Ext(A \cap B)$.
- Follows from definition 4.9 and theorem 3.8(2).
- 10) $b\hat{g} \operatorname{Ext}(X \setminus b\hat{g} \operatorname{Ext}(A)) = b\hat{g} \operatorname{Ext}(X \setminus b\hat{g})$ Int $(X \setminus A)$ = $b\hat{g}$ Int $(X \setminus \{X \setminus b\hat{g})$ Int $(X \setminus A)$ = $b\hat{g}$ Int $(b\hat{g} \operatorname{Int}(X \setminus A)) = b\hat{g}$ Int $(X \setminus A)$ (by theorem 3.8 (9)) which is

www.jetir.org (ISSN-2349-5162)

 $b\hat{g} Ext(A)$. Hence, $b\hat{g} (X \setminus b\hat{g} Ext(A)) = b\hat{g} Ext(A)$.

- 11) $b\hat{g} Ext(b\hat{g} Ext(A)) = b\hat{g} Int(X \setminus b\hat{g})$ $Ext(A)) = b\hat{g} Int(X \setminus b\hat{g} Int X \setminus A)) = b\hat{g}$ Int $(b\hat{g} Cl(X \setminus (X \setminus A)) = b\hat{g} Int(b\hat{g} Cl(A)))$ (by result 4.3 (1)). Hence, $b\hat{g} Ext(b\hat{g})$ $Ext(A)) = b\hat{g} Int(b\hat{g} Cl(A)).$
- 12) Since $A \subseteq b \hat{g} Cl(A)$, $b \hat{g} Int(A) \subseteq b \hat{g}$ Int $(b \hat{g} Cl(A)) = b \hat{g} E x t(b \hat{g} E x t(A))$ (from(11)).
- 13) $b\hat{g}$ Int(A) $\cup b\hat{g}$ Ext(A) $\cup b\hat{g}$ Fr(A) = $b\hat{g}$ Int(A) $\cup b\hat{g}$ Int(X / A) $\cup b\hat{g}$ Fr(A) = X (from theorem 4.8 (12)).

REFERENCE:

[1] K.Bala Deepa Arasi & M.Mari Vidhya, A New Notion of b* \hat{g} -Closed Sets in Topological Spaces, *Conscientious Computing Technologies*, *April 2018*, pp. 456-460.

[2] P.Das, Note On some application of semiopensets, *Prog. Math* 7(1973),33-44.

[3] R.Subasree & M.Mariasingam, On b*ĝ*-closed set in topological spaces, *International Journal of Mathematical Archive-4*(7), 2013, 168-173.

[4] R.Subasree & M.Mariasingam, On b \hat{g} - Continuous maps and b \hat{g} -open maps in topological spaces, *IJERT*, *Vol* 2(10), *October* 2013.